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Background

With the Covid-19 pandemic, supply chains, including those for medical items,
have been disrupted adding to the intense competition for such supplies.
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Background

The great need for medical items from Personal Protective Equipment (PPEs) to
ventilators and, now, even convalescent plasma, has led to intense competition for
medical supplies among healthcare institutions and even regions, including states,
as well as nations.
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Background

China has historically produced half of the world’s face masks, but with the
coronavirus originating in Wuhan, China, the country dedicated the majority
of the supply for their own citizens.

Countries, such as Germany, even banned the export of PPEs.

The intense competition for PPEs led to a dramatic increase in the price.

The price of N95 masks grew from $0.38 to $5.75 each (a 1,413% increase)
(Diaz, Sands, and Alesci (2020) and Berklan (2020)).

Isolation protective gowns experienced a price increase from $0.25 to $5.00
(a 1900% increase).

The price of reusable face shields went from $0.50 to $4.00 (a 700%
increase).
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Background

We develop a competitive game theory network model for medical
supplies inspired by the Covid-19 pandemic.

It features salient characteristics of the realities of this pandemic in terms of
competition among organizations/institutions for supplies under limited
capacities globally as well as uncertain demands.

Our model includes general transportation costs.

Since organizations, notably, healthcare ones, compete with one another for
the limited supplies, given the prices and their associated logistical costs as
well as the expected loss due to possible shortages or surpluses, the model is
a Generalized Nash Equilibrium (GNE) model.

In the case of GNE models not only do the objective functions of the players
in the game depend on the strategies of the other players but the feasible
sets do as well.
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Literature Review

The first stochastic GNE model for disaster relief was constructed by
Nagurney et al. (2020).

The constructs that we utilize for handling the uncertain demands for
medical items are based on results of Dong, Zhang, and Nagurney (2004),
Nagurney, Yu, and Qiang (2011) and Nagurney, Masoumi, and Yu (2012,
2015).

Mete and Zabinsky (2010) introduced a two-stage stochastic optimization
model for storage and distribution of medical supplies but considered a
single decision-maker.
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The Generalized Nash Equilibrium Network Model for
Medical Supplies under Stochastic Demand

The network consists of m supply locations for the medical supplies, with a
typical supply point denoted by i , and n locations that are demand points,
with a typical demand point denoted by j .
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Figure: The Network Structure of the Competitive Game Theory Model for
Medical Supplies
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The Generalized Nash Equilibrium Network Model for
Medical Supplies under Stochastic Demand
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The Generalized Nash Equilibrium Network Model for
Medical Supplies under Stochastic Demand

Stochastic Demand

Since dj denotes the actual (uncertain) demand at destination point j , we
have:

Pj(Dj) = Pj(dj ≤ Dj) =

∫ Dj

0
Fj(t)dt, j = 1, . . . , n, (1)

where Pj and Fj denote the probability distribution function, and the
probability density function of demand at point j , respectively. vj is the
“projected demand” for the medical item at demand point j ; j = 1, . . . , n.
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The Generalized Nash Equilibrium Network Model for
Medical Supplies under Stochastic Demand

Note that vj is the “projected demand” for the medical item at demand
point j ; j = 1, . . . , n.

Shortage and Surplus

The amounts of shortage and surplus at demand point j are calculated,
respectively, according to:

∆−
j ≡ max{0, dj − vj}, j = 1, . . . , n, (2a)

∆+
j ≡ max{0, vj − dj}, j = 1, . . . , n. (2b)

The expected values of shortage and surplus at each demand point are, hence:

E (∆−j ) =

∫ ∞
vj

(t − vj)Fj(t)dt, j = 1, . . . , n, (3a)

E (∆+
j ) =

∫ vj

0

(vj − t)Fj(t)dt, j = 1, . . . , n. (3b)
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The Generalized Nash Equilibrium Network Model for
Medical Supplies under Stochastic Demand

Expected Penalties

The expected penalty incurred by demand point j due to the shortage and
surplus of the medical item is equal to:

E (λ−j ∆−
j + λ+j ∆+

j ) = λ−j E (∆−
j ) + λ+j E (∆+

j ), j = 1, . . . , n. (4)

Projected Demand

The projected demand at demand point j , vj , is equal to the sum of flows
of the medical item to j , that is:

vj ≡
m∑
i=1

qij , j = 1, . . . , n. (5)
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The Generalized Nash Equilibrium Network Model for
Medical Supplies under Stochastic Demand

Objective Function

The objective function of each demand point j is, hence, given by:

Minimize
m∑
i=1

ρiqij +
m∑
i=1

cij(q) + λ−j E (∆−
j ) + λ+j E (∆+

j ) (6)

We refer to the objective function (6) for j as the disutility of j and denote
it by DUj(q); j = 1, . . . , n.

Constraints
n∑

j=1

qij ≤ Si , i = 1, . . . ,m, (7)

qij ≥ 0, i = 1, . . . ,m. (8)
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The Generalized Nash Equilibrium Network Model for
Medical Supplies under Stochastic Demand

We assume that the total generalized transportation cost functions
are continuously differentiable and convex.

In our model, the transportation costs can, in general, depend upon
the vector of medical item flows since there is competition for freight
service provision in the pandemic.

In the paper, we present some preliminaries that allow us to express
the partial derivatives of the expected total shortage and discarding
costs of the medical items at the demand points only in terms of the
medical item flow variables.

We prove that the third term in the Objective Function (6) is also
convex.
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The Generalized Nash Equilibrium Network Model for
Medical Supplies under Stochastic Demand

Feasible Set

We define the feasible sets Kj ≡ {qj ≥ 0}; j = 1, . . . , n. We define

K ≡
∏I

i=1 Ki . We also define the feasible set S ≡ {q|q satisfying (7))},
which consists of the shared constraints.

Definition 1: Generalized Nash Equilibrium for Medical Items

A vector of medical items q∗ ∈ K ∩ S is a Generalized Nash Equilibrium if
for each demand point j; j = 1, . . . , n:

DUj(q
∗
j , q̂

∗
j ) ≤ DUj(qj , q̂

∗
j ), ∀qj ∈ Kj ∩ S, (17)

where q̂∗j ≡ (q∗1 , . . . , q
∗
j−1, q

∗
j+1, . . . , q

∗
n).
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The Generalized Nash Equilibrium Network Model for
Medical Supplies under Stochastic Demand

According to (17), an equilibrium is established if no demand point
has any incentive to unilaterally change its vector of medical item
purchases/shipments.

In our model not only does the objective function of a demand point
depend on the vector of strategies of its own strategies and on those
of the other demand points, but the feasible set does as well.

This model is not a Nash (1950, 1951) model, but, rather, it is a
Generalized Nash Equilibrium model.

We define the feasible set K ≡ K ∩ S.

Our model captures the reality of the intense competitive landscape
in the Covid-19 pandemic.
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The Generalized Nash Equilibrium Network Model for
Medical Supplies under Stochastic Demand

Definition 2: Variational Equilibrium

A vector of medical items q∗ ∈ K is a Variational Equilibrium of the above
Generalized Nash Equilibrium problem if it is a solution to the following
variational inequality:

n∑
j=1

m∑
i=1

∂DUj(q
∗)

qij
× (qij − q∗ij) ≥ 0, ∀q ∈ K, (18)

where 〈·, ·〉 denotes the inner product in mn-dimensional Euclidean space.

In expanded form, the variational inequality in (18) is: determine q∗ ∈ K such
that
n∑

j=1

m∑
i=1

[
ρi +

m∑
l=1

∂clj(q
∗)

∂qij
+ λ+j Pj(

m∑
l=1

q∗lj )− λ−j (1− Pj(
m∑
l=1

q∗lj ))

]
×
[
qij − q∗ij

]
≥ 0, ∀q ∈ K.

(19)
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The Generalized Nash Equilibrium Network Model for
Medical Supplies under Stochastic Demand

Standard Form

From Nagurney (1999) we know that finite-dimensional variational
inequality problem, VI(F ,K), is to determine a vector X ∗ ∈ K ⊂ RN , such
that

〈F (X ∗),X − X ∗〉 ≥ 0, ∀X ∈ K, (20)

where F is a given continuous function from K to RN , and K is a given
closed, convex set.
We let X ≡ q and F (X ) be the vector with elements: {∂DUj (q

∗)
qij

}, ∀j , i
with K as originally defined and N = mn. Then, clearly, variational
inequality (19) can be put into standard form (20), under our assumptions.
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The Generalized Nash Equilibrium Network Model for
Medical Supplies under Stochastic Demand

We associate a nonnegative Lagrange multiplier µi with constraint (7), for each
supply location i = 1, . . . ,m. We group all the Lagrange multipliers into the
vector µ ∈ Rm

+ . We define the feasible set K2 ≡ {(q, µ)|q ≥ 0, µ ≥ 0}.

Alternative Variational Inequality

Using arguments as in Nagurney, Salarpour, and Daniele (2019), an alternative
variational inequality for (19) is: determine (q∗, µ∗) ∈ K2 such that

n∑
j=1

m∑
i=1

[
ρi +

m∑
l=1

∂clj(q
∗)

∂qij
+ λ+j Pj(

m∑
l=1

q∗lj )− λ−j (1− Pj(
m∑
l=1

q∗lj ) + µ∗i

]
×
[
qij − q∗ij

]

+
m∑
i=1

Si − n∑
j=1

q∗ij

× [µi − µ∗i ] ≥ 0, ∀(q, µ) ∈ K2. (21)
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Illustrative Examples

The illustrative examples are inspired by the Covid-19 pandemic and
associated challenges in procuring N95 face masks.
The supply point sells 20-pack N95 masks in the form of large bulks
of 1000 packs each; therefore, one unit of item flow from the supply
point to a demand point, qij , represents 1000 of 20-pack N95 masks.
The demand at the demand point is uniformly distributed between
100 and 1,000 of large bulks.
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Illustrative Examples

Supply Point

Demand Point

j1
j1?
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Example 1
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Figure: Network Topology for Illustrative
Example 2
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Figure: Network Topology for Illustrative
Example 3
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Illustrative Examples

We assume that the price of each 20-pack N95 mask during the pandemic is
$25, so that the purchase price of each large bulk is ρ1 = 25, 000.

We assume that, for every 2,000 people who do not use the face mask, one
person would die due to the disease.

Although it is not easy to value people’s lives, we assume a $200,000
equivalent for each loss. As a result, the penalty, λ−1 , on the shortage of one
item flow, which is equivalent to 20,000 N95 masks, is set at $2,000,000.

We also consider a penalty of λ+1 = 100, 000 on surplus item flows to avoid
overloading.
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Illustrative Examples

Data for Illustrative Example 1

ρ1 = 25, 000, S1 = 1, 000, c11(q) = q211 + 3q11,

λ−1 = 2, 000, 000, λ+1 = 100, 000.

We can rewrite variational inequality (21) for this example as: determine
(q∗, µ∗) ∈ K2 such that:[

25000 + 2q∗11 + 3 + 100000(
q∗11 − 100

900
)− 2000000(

1000− q∗11
900

) + µ∗1

]
×[q11 − q∗11]

+ [1000− q∗11]× [µ1 − µ∗1 ] ≥ 0, ∀(q, µ) ∈ K2

The solution to the above variational inequality, which we obtained analytically, is:

q∗11 = 945.62, µ∗1 = 0.00.
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Illustrative Examples

Additional Data for Illustrative Example 2

ρ2 = 10, 000, S2 = 500, c21(q) = 2q221 + 4q21.

Additional Data for Illustrative Example 3

The demand for the new demand point is uniformly distributed between
100 and 500. The generalized transportation cost functions and the
penalty coefficients associated with the second demand point are:

c12(q) = 2q212 + 3q12, c22(q) = 3q222 + 4q22,

λ−2 = 2, 000, 000, λ+2 = 100, 000.
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Illustrative Examples

In Example 1, the projected demand value v1 = 945.62 which is very close to
the upper bound.

The disutility of the organization in this logistical operation is equal to
67,543,534.04.

In Example 2, with the addition of a new supply point that offers lower
price,the decision-makers purchase more items from supply point 2.

The supply capacity of the new supply point is half that of the first supply
point, and we see that all its capacity has been used. Therefore, the
associated equilibrium Lagrange multiplier is positive.

Now, with greater flexibility in the supply chain due to the addition of a new
supply point, the disutility of the organization at the demand point has
declined, dropping to 59,860,548.75.
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Illustrative Examples

In Example 3, it can be seen that the full capacity of supply point 2
has not been assigned to demand point 1, since the organization at
demand point 1 now competed with the organization at demand
point 2.

The major part of the demand point 1’s procurement of the N95
masks is from supply point 1 that has a larger capacity as compared
to supply point 2.

The addition of a new demand point to the competition has changed
the strategies of the organization at demand point 1, and we can see
the impact on its disutility. Its disutility has now increased to
62,580,546.57. The disutility of the second demand point is
28,457,845.74.
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Qualitative Properties

Theorem 2: Monotonicity

The function F (X ) is monotone, for all X ∈ K, if all the generalized
transportation cost functions cij , i = 1, . . . ,m; j = 1, . . . , n, are convex.

Theorem 3: Uniqueness

The function F (X ) is strictly monotone for all X ∈ K, if all the generalized
transportation cost functions cij ; i = 1, . . . ,m; j = 1, . . . , n, are strictly convex.
Then the variational inequality (21) has a unique solution in K

Theorem 4: Lipschitz Continuity

If the generalized transportation cost functions cij , for all i and j , have bounded
second order partial derivatives, then the function F (X ) that enters the
variational inequality problem (21) is Lipschitz continuous; that is, there exists a
constant L > 0, known as the Lipschitz constant, such that

‖F (X 1)− F (X 2)‖ ≤ L‖X 1 − X 2‖, ∀X 1,X 2 ∈ K. (25)
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Algorithm

Modified Projection Method (Korpelevich (1977))

Step 0: Initialization
Initialize with X 0 ∈ K. Set the iteration counter τ := 1 and let β be a
scalar such that 0 < β ≤ 1

L , where L is the Lipschitz constant.
Step 1: Computation
Compute X̄ τ by solving the variational inequality subproblem:

〈X̄ τ + βF (X τ−1)− X τ−1,X − X̄ τ 〉 ≥ 0, ∀X ∈ K. (26)

Step 2: Adaptation
Compute X τ by solving the variational inequality subproblem:

〈X τ + βF (X̄ τ )− X τ−1,X − X τ 〉 ≥ 0, ∀X ∈ K. (27)

Step 3: Convergence Verification
If |X τ − X τ−1| ≤ ε, with ε > 0, a pre-specified tolerance, then stop;
otherwise, set τ := τ + 1 and go to Step 1.
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Algorithm

Explicit Formula for the Medical Item Flow

Determine q̄τij for each i , j at Step 1 iteration τ according to:

q̄τij = max{0, qτ−1ij + β(−ρi −
m∑
l=1

∂clj(q
τ−1)

∂qij
− λ+j Pj(

m∑
l=1

qτ−1lj )+

λ−j (1− Pj(
m∑
l=1

qτ−1lj ))− µτ−1
i )}. (28)

Explicit Formula for the Lagrange Multiplier

Determine µ̄τ
i for each i at Step 1 iteration τ according to:

µ̄τ
i = max{0, µτ−1

i + β(−Si +
n∑

j=1

qτ−1ij )}. (29)
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Numerical Examples: Example 1

The network consists of a single supply point and a single demand point.

The qijs are in units since these medical practices are small relative to
hospitals, etc.

We assumed a uniform probability distribution in the range [100, 1000] at
the demand point.

The additional data for this example are:

ρ1 = 2, S1 = 1, 000, c11(q) = .005q211 + .01q11,

λ−1 = 1, 000, λ+1 = 10.

The computed equilibrium solution is:

q∗11 = 980.56, µ∗1 = 0.00.

The projected demand of 980.56 is close to the upper bound of the
probability distribution at the demand point.
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Numerical Examples: Example 2

There is one supply point and two demand points.

This example has the same data as Numerical Example 1 except for the
following additional data for the new demand point:

c12(q) = .01q212 + .02, λ−2 = 1000, λ+2 = 10.

The modified projection method converged to the following equilibrium
solution:

q∗11 = 502.20, q∗12 = 497.80, µ∗1 = 541.61.

The available supply of 1,000 N95 masks is exhausted between the two
demand points, and, hence, the associated Lagrange multiplier µ∗1 is positive.
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Numerical Examples: Example 3

The network consists of two supply points and two demand points.

The data are same as that of Example 2 with the following additions:

S2 = 500, ρ2 = 3, c21(q) = .015q221 + .03, c22(q) = .02q222 + .04q22.

The modified projection method yielded the following equilibrium solution:

q∗11 = 526.31, q∗12 = 473.69, q∗21 = 225.57,

q∗22 = 274.43, µ∗1 = 261.17, µ∗2 = 258.65.
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Numerical Examples: Example 4

The network consists of two supply points and three demand points.
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Figure: Network Topology for Numerical Example 4

Nagurney, Salarpour, Dong and Dutta Competition for Medical Supplies Under Stochastic Demand in the Covid-19 Pandemic: A Generalized Nash Equilibrium Framework



Numerical Examples: Example 4

Numerical Example 4 has the same data as Numerical Example 3 but
with the addition of data for demand point 3 as follows:

c13(q) = .01q213 + .02q13, c23(q) = .015q223 + .03q23,

λ−3 = 1000, λ+3 = 10.

The probability distribution for the N95 masks associated with
demand point 3 is uniform with a lower bound of 200 and an upper
bound of 1000.

The modified projection method yielded the following equilibrium
solution:

q∗11 = 360.11, q∗12 = 318.83, q∗13 = 321.06,

q∗21 = 122.29, q∗22 = 161.10, q∗23 = 216.62,

µ∗1 = 565.25, µ∗2 = 564.16.
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Numerical Examples: Example 5

There are two supply points and four demand points.
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Figure: Network Topology for Numerical Example 5
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Numerical Examples: Example 5

Additional data for the new demand point 4:

c14(q) = .015q214 + .03q14, c24(q) = .025q224 + .05q24,

λ−4 = 1000, λ+4 = 10.

The modified projection method now yielded the following equilibrium
solution:

q∗11 = 260.73, q∗12 = 229.36, q∗13 = 251.22, q∗14 = 258.69,

q∗21 = 79.57, q∗22 = 109.17, q∗23 = 160.46,

q∗24 = 150.81, µ∗1 = 725.71, µ∗2 = 724.91.
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Summary and Conclusions

In Numerical Example 2 we see that with increased competition for N95
mask supplies from the second demand point, the first demand point has a
large reduction in procured supplies, as compared to the volume received in
Numerical Example 1.

With the addition of a new supply point in Numerical Example 3, both
demand points gain significantly in terms of the volume of N95 that each
procures and the supplies at each supply point are fully sold out.

In Numerical Example 4 with increasing competition for the N95 masks with
another demand point, both demand points 1 and 2 experience decreases in
procurement of supplies. The two supply points again fully sell out of their
N95 masks.

In Numerical Example 5 the suppliers of the N95 sell out their supplies.
However, the demand points lose in term of supply procurement for their
organizations with the increased demand and competition from and yet
another demand point.
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Summary and Conclusions

Medical supplies are essential in the battle against the coronavirus that
causes Covid-19.

The demand for medical supplies globally from PPEs to ventilators has
created an intense competition.

We developed a Generalized Nash Equilibrium model that consists of
multiple supply points for the medical items and multiple demand points
with the demand at the latter being stochastic.

Using some recently introduced machinery we were able to provide
alternative variational inequality formulations of the equilibrium conditions.
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Summary and Conclusions

We utilized the variational inequality with not only medical item product
flows as variables but also the Lagrange multipliers associated with the
supply capacities of the medical items at the supply point.

We studied the model quantitatively through illustrative examples that we
were able to solve analytically as well as via numerical examples for which
we utilized an algorithm that we proposed.

The findings from the numerical examples confirm that more supply points
with sufficient supplies are needed to ensure that organizations are not
deprived of critical supplies due to competition.

As a result of this competition and limited local availability; in particular in
the case of supplies such as masks and even coronavirus test kits, we are
seeing several countries now setting up local production sites.

This model can be applied to study the network economics of a spectrum of
medical items, both in the near term, and in the longer term, as when
vaccines as well as medicines for Covid-19 become available.
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